Title: | Tidy Manipulation of Fourier Transformed Data |
---|---|
Description: | The 'fftab' package stores Fourier coefficients in a tibble and allows their manipulation in various ways. Functions are available for converting between complex, rectangular ('re', 'im'), and polar ('mod', 'arg') representations, as well as for extracting components as vectors or matrices. Inputs can include vectors, time series, and arrays of arbitrary dimensions, which are restored to their original form when inverting the transform. Since 'fftab' stores Fourier frequencies as columns in the tibble, many standard operations on spectral data can be easily performed using tidy packages like 'dplyr'. |
Authors: | Timothy Keitt [aut, cre] |
Maintainer: | Timothy Keitt <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.1.0.9000 |
Built: | 2025-03-27 05:19:46 UTC |
Source: | https://github.com/thk686/fftab |
These functions add additional representations to a fftab
object without removing or modifying existing representations.
add_cplx(x) add_rect(x) add_polr(x)
add_cplx(x) add_rect(x) add_polr(x)
x |
A |
add_cplx()
: Adds a complex ("cplx"
) representation to the Fourier coefficients.
add_rect()
: Adds a rectangular ("rect"
) representation to the Fourier coefficients.
add_polr()
: Adds a polar ("polr"
) representation to the Fourier coefficients.
These functions are useful for working with multiple representations simultaneously without overwriting existing data.
A fftab
object with the additional representation included.
matrix(1:9, 3) |> fftab() |> print(n = 3) |> add_polr() |> print(n = 3) |> add_rect() |> print(n = 3) |> add_cplx() |> print(n = 3)
matrix(1:9, 3) |> fftab() |> print(n = 3) |> add_polr() |> print(n = 3) |> add_rect() |> print(n = 3) |> add_cplx() |> print(n = 3)
These functions compute and append the L2 norm and squared L2 norm of the frequency dimensions
(.dim_*
columns) as new columns in a fftab
object.
add_l2nm(x) add_l2sq(x) get_l2nm(x) get_l2sq(x)
add_l2nm(x) add_l2sq(x) get_l2nm(x) get_l2sq(x)
x |
A |
add_l2nm()
: Appends a column l2nm
containing the L2 norm, calculated as the square root
of the sum of squared values across .dim_*
columns.
add_l2sq()
: Appends a column l2sq
containing the squared L2 norm, calculated as the sum
of squared values across .dim_*
columns.
get_l2nm()
: Returns a numeric vector representing the L2 norm for each row.
get_l2sq()
: Returns a numeric vector representing the squared L2 norm for each row.
A vector or fftab
object with additional columns:
l2nm
: The L2 norm of the frequency dimensions.
l2sq
: The squared L2 norm of the frequency dimensions.
matrix(1:9, 3) |> fftab() |> print(n = 3) |> add_l2nm() |> print(n = 3) |> add_l2sq() |> print(n = 3)
matrix(1:9, 3) |> fftab() |> print(n = 3) |> add_l2nm() |> print(n = 3) |> add_l2sq() |> print(n = 3)
fftab
ObjectThese functions handle representation management for a fftab
object:
can_repr(x, repr) get_repr(x) set_repr(x, repr)
can_repr(x, repr) get_repr(x) set_repr(x, repr)
x |
A |
repr |
For |
get_repr()
: Retrieve current representations.
can_repr()
: Check if the object supports specific representations.
set_repr()
: Convert the object to one or more specified representations.
can_repr()
: Logical value (TRUE
or FALSE
) indicating if the object supports the specified representations.
get_repr()
: A character vector of current representations.
set_repr()
: A modified fftab
object with the specified representation(s).
fftab(c(1, 0, -1, 0)) |> can_repr("cplx") fftab(c(1, 0, -1, 0)) |> get_repr() fftab(c(1, 0, -1, 0)) |> set_repr(c("polr", "rect"))
fftab(c(1, 0, -1, 0)) |> can_repr("cplx") fftab(c(1, 0, -1, 0)) |> get_repr() fftab(c(1, 0, -1, 0)) |> set_repr(c("polr", "rect"))
The cross_spec
function computes the cross-spectrum between two inputs
using the Fourier transform. It supports multiple input types including
numeric vectors, time series (ts
), arrays, and fftab
objects.
The function provides options for normalization and controlling whether the
conjugate of the second input is used.
cross_spec(a, b, norm = FALSE, conj = TRUE) ## Default S3 method: cross_spec(a, b, norm = FALSE, conj = TRUE) ## S3 method for class 'ts' cross_spec(a, b, norm = FALSE, conj = TRUE) ## S3 method for class 'array' cross_spec(a, b, norm = FALSE, conj = TRUE) ## S3 method for class 'fftab' cross_spec(a, b, norm = FALSE, conj = TRUE)
cross_spec(a, b, norm = FALSE, conj = TRUE) ## Default S3 method: cross_spec(a, b, norm = FALSE, conj = TRUE) ## S3 method for class 'ts' cross_spec(a, b, norm = FALSE, conj = TRUE) ## S3 method for class 'array' cross_spec(a, b, norm = FALSE, conj = TRUE) ## S3 method for class 'fftab' cross_spec(a, b, norm = FALSE, conj = TRUE)
a |
The first input for the cross FFT. Supported types include numeric
vectors, |
b |
The second input for the cross FFT. Must match the dimensions or
structure of |
norm |
Logical; if |
conj |
Logical; if |
An object representing the cross-spectrum:
For default
and fftab
methods: A fftab
object.
For ts
objects: A fftab
object with .tsp
attributes inherited
from a
.
For arrays: A fftab
object with .dim
attributes inherited
from a
.
cross_spec(default)
: Default method for computing cross FFT.
Converts inputs to fftab
objects before computation.
cross_spec(ts)
: Method for time series (ts
) objects.
Ensures the time series frequencies are consistent and preserves the tsp
attribute.
cross_spec(array)
: Method for array inputs.
Ensures dimensions are consistent and preserves the dim
attribute.
cross_spec(fftab)
: Method for fftab
objects.
Performs the cross-frequency transform directly using the Fourier transforms of a
and b
.
cross_spec(rnorm(8), rnorm(8), norm = TRUE) cross_spec( ts(rnorm(8), frequency = 4), ts(rnorm(8), frequency = 4) )
cross_spec(rnorm(8), rnorm(8), norm = TRUE) cross_spec( ts(rnorm(8), frequency = 4), ts(rnorm(8), frequency = 4) )
Provides functions to compute the Fast Fourier Transform (FFT) and its inverse (IFFT)
while maintaining results in a tabular format. Supports vectors, time series
(ts
), and arrays as inputs.
fftab(x, norm = FALSE) ## Default S3 method: fftab(x, norm = FALSE) ## S3 method for class 'ts' fftab(x, norm = FALSE) ## S3 method for class 'array' fftab(x, norm = FALSE) ifftab(x)
fftab(x, norm = FALSE) ## Default S3 method: fftab(x, norm = FALSE) ## S3 method for class 'ts' fftab(x, norm = FALSE) ## S3 method for class 'array' fftab(x, norm = FALSE) ifftab(x)
x |
Input object for which to compute the FFT or IFFT. This can be:
|
norm |
Logical. If |
fftab
organizes FFT results into a tibble for downstream analysis.
ifftab
ensures that reconstructed signals match the input structure (e.g., arrays, ts
).
fftab
: A tibble containing:
Fourier frequencies (.dim_1
, .dim_2
, etc.).
FFT values stored in the fx
column as complex values.
ifftab
: A vector, array, or time series object representing the reconstructed signal.
The fftab
function computes the FFT for different input types:
Default Input (fftab.default
): Computes FFT for numeric vectors.
Time Series Input (fftab.ts
): Handles FFT for ts
objects, scaling frequencies appropriately.
Array Input (fftab.array
): Processes multidimensional arrays.
Results are returned as a tibble containing Fourier frequencies and FFT values.
The ifftab
function reconstructs the original signal from a fftab
object.
It supports vectors, arrays, and time series inputs. The inverse transform preserves
the original structure (e.g., array dimensions or time series attributes).
fftab(c(1, 0, -1, 0)) fftab(c(1, 0, -1, 0)) |> ifftab() ts(sin(1:10), frequency = 12) |> fftab() array(1:8, dim = c(2, 2, 2)) |> fftab()
fftab(c(1, 0, -1, 0)) fftab(c(1, 0, -1, 0)) |> ifftab() ts(sin(1:10), frequency = 12) |> fftab() array(1:8, dim = c(2, 2, 2)) |> fftab()
Computes Fourier frequencies for various types of inputs, such as scalars, vectors, matrices, time series, or arrays. This generic function dispatches appropriate methods based on the input type.
fourier_frequencies(x) ## Default S3 method: fourier_frequencies(x) ## S3 method for class 'ts' fourier_frequencies(x) ## S3 method for class 'array' fourier_frequencies(x)
fourier_frequencies(x) ## Default S3 method: fourier_frequencies(x) ## S3 method for class 'ts' fourier_frequencies(x) ## S3 method for class 'array' fourier_frequencies(x)
x |
The input object. Supported input types:
|
This function has the following methods:
Default Input (fourier_frequencies.default
): Computes normalized Fourier frequencies for scalar or vector inputs.
Time Series Input (fourier_frequencies.ts
): Computes frequencies scaled by the frequency attribute of a ts
object.
Multidimensional Arrays (fourier_frequencies.array
): Computes frequencies for each dimension of a matrix or array.
See the examples for details on each case.
A tibble where:
.dim_1
, .dim_2
, ..., represent the Fourier frequencies for each dimension.
tidyr::expand_grid()
, frequency()
# Default input (vector) fourier_frequencies(8) # Time series input ts(rnorm(36), frequency = 12) |> fourier_frequencies() # Multidimensional array input array(1:27, dim = c(3, 3, 3)) |> fourier_frequencies() # Matrix input matrix(1:9, nrow = 3, ncol = 3) |> fourier_frequencies()
# Default input (vector) fourier_frequencies(8) # Time series input ts(rnorm(36), frequency = 12) |> fourier_frequencies() # Multidimensional array input array(1:27, dim = c(3, 3, 3)) |> fourier_frequencies() # Matrix input matrix(1:9, nrow = 3, ncol = 3) |> fourier_frequencies()
These utility functions extract specific components from a fftab
object.
get_fx
retrieves the raw Fourier coefficients, while get_fx_norm
ensures the
coefficients are either normalized or not normalized based on the norm
parameter.
get_fx(x) get_fx_norm(x, norm = FALSE) get_re(x) get_im(x) get_mod(x) get_arg(x)
get_fx(x) get_fx_norm(x, norm = FALSE) get_re(x) get_im(x) get_mod(x) get_arg(x)
x |
A |
norm |
Logical. If |
get_fx
: Returns coefficients as they are stored in the fftab
object.
get_fx_norm
: Adjusts coefficients if they are not in the desired normalization state.
get_re
, get_im
: Extract real and imaginary components.
get_mod
, get_arg
: Compute magnitude and phase of coefficients.
The requested components:
get_fx
: A complex vector of raw Fourier coefficients (fx
) as stored in the object.
get_fx_norm
: A complex vector of Fourier coefficients, explicitly normalized
or non-normalized based on the norm
parameter.
get_re
: A numeric vector of real parts (re
).
get_im
: A numeric vector of imaginary parts (im
).
get_mod
: A numeric vector of magnitudes (mod
).
get_arg
: A numeric vector of phase angles (arg
), in radians.
to_cplx()
, to_rect()
, to_polr()
fftab(c(1, 0, -1, 0)) |> get_fx() fftab(c(1, 0, -1, 0)) |> get_fx_norm(norm = TRUE) fftab(c(1, 0, -1, 0)) |> get_re() fftab(c(1, 0, -1, 0)) |> get_im() fftab(c(1, 0, -1, 0)) |> get_mod() fftab(c(1, 0, -1, 0)) |> get_arg()
fftab(c(1, 0, -1, 0)) |> get_fx() fftab(c(1, 0, -1, 0)) |> get_fx_norm(norm = TRUE) fftab(c(1, 0, -1, 0)) |> get_re() fftab(c(1, 0, -1, 0)) |> get_im() fftab(c(1, 0, -1, 0)) |> get_mod() fftab(c(1, 0, -1, 0)) |> get_arg()
The get_rect
and get_polr
functions extract specific components from a
fftab
object, representing the Fourier coefficients in either rectangular
or polar form.
get_rect(x) get_polr(x)
get_rect(x) get_polr(x)
x |
A matrix object containing FFT results. |
get_rect
: A matrix with two columns:
re
: The real part of the coefficients.
im
: The imaginary part of the coefficients.
get_polr
: A matrix with two columns:
mod
: The magnitude of the coefficients.
arg
: The phase angle of the coefficients, in radians.
get_fx()
, get_re()
, get_mod()
, to_rect()
, to_polr()
fftab(c(1, 0, -1, 0)) |> get_rect() fftab(c(1, 0, -1, 0)) |> get_polr()
fftab(c(1, 0, -1, 0)) |> get_rect() fftab(c(1, 0, -1, 0)) |> get_polr()
fftab
ObjectThese functions check if specific representations are present in a fftab
object:
has_cplx(x) has_rect(x) has_polr(x)
has_cplx(x) has_rect(x) has_polr(x)
x |
A |
has_cplx()
: Checks if the object has complex representation (fx
column).
has_rect()
: Checks if the object has rectangular representation (re
, im
columns).
has_polr()
: Checks if the object has polar representation (mod
, arg
columns).
Logical value (TRUE
or FALSE
) indicating whether the specified representation exists.
fftab(c(1, 0, -1, 0)) |> has_cplx() fftab(c(1, 0, -1, 0)) |> has_rect() fftab(c(1, 0, -1, 0)) |> has_polr()
fftab(c(1, 0, -1, 0)) |> has_cplx() fftab(c(1, 0, -1, 0)) |> has_rect() fftab(c(1, 0, -1, 0)) |> has_polr()
Computes the phase difference and maximum normalized correlation between two input signals
after phase-aligning the second signal (b
) to the first signal (a
).
phase_diff(a, b)
phase_diff(a, b)
a |
A numeric vector or time series representing the first signal. |
b |
A numeric vector or time series representing the second signal. |
This function performs the following steps:
Computes the Fourier Transform of both input signals using fftab
.
Calculates the cross-spectrum of the signals.
Converts the cross-spectrum to polar form and computes the weighted average phase difference.
Adjusts the phase of the second signal (b
) using .shift_phase
to maximize alignment with the first signal (a
).
Computes the normalized correlation between the phase-aligned signals.
The correlation is normalized using the variances of both signals and will generally be higher than the correlation between the original signals due to the optimal phase alignment.
A numeric vector of length two:
The first element represents the phase difference (in radians) required to maximize alignment between the two signals.
The second element represents the maximum normalized correlation achieved after phase alignment.
phase_diff( sin(seq(0, 2 * pi, length.out = 128)), cos(seq(0, 2 * pi, length.out = 128)) )
phase_diff( sin(seq(0, 2 * pi, length.out = 128)), cos(seq(0, 2 * pi, length.out = 128)) )
Plots the modulus of the FFT results against the frequencies.
## S3 method for class 'fftab' plot(x, ...)
## S3 method for class 'fftab' plot(x, ...)
x |
A |
... |
Additional arguments passed to |
A ggplot
object representing the modulus of FFT results plotted against the frequencies.
The plot shows the modulus (mod
) on the y-axis and frequency values on the x-axis.
These functions convert dimensions of frequency from cyclic (measured in cycles) to angular (measured in radians) or vice versa. This transformation scales dimensions by a factor of 2 * pi.
to_angf()
: Converts from cyclic to angular frequency.
to_cycf()
: Converts from angular to cyclic frequency.
to_angf(x) to_cycf(x)
to_angf(x) to_cycf(x)
x |
An |
An fftab
object with dimensions scaled appropriately and the .is_angular
attribute updated.
# Convert cyclic to angular frequencies rnorm(64) |> fftab() |> to_angf() |> to_rect() |> dplyr::slice_max(abs(.dim_1), n = 5) # Convert angular back to cyclic frequencies rnorm(64) |> fftab() |> to_angf() |> to_cycf() |> to_rect() |> dplyr::slice_max(abs(.dim_1), n = 5)
# Convert cyclic to angular frequencies rnorm(64) |> fftab() |> to_angf() |> to_rect() |> dplyr::slice_max(abs(.dim_1), n = 5) # Convert angular back to cyclic frequencies rnorm(64) |> fftab() |> to_angf() |> to_cycf() |> to_rect() |> dplyr::slice_max(abs(.dim_1), n = 5)
fftab
Object Between RepresentationsThese functions convert a fftab
object to a specified representation:
to_cplx()
: Converts to complex representation (fx
).
to_rect()
: Converts to rectangular representation (re
, im
).
to_polr()
: Converts to polar representation (mod
, arg
).
to_cplx(x, .keep = "unused") to_rect(x, .keep = "unused") to_polr(x, .keep = "unused")
to_cplx(x, .keep = "unused") to_rect(x, .keep = "unused") to_polr(x, .keep = "unused")
x |
A |
.keep |
Specifies which columns to retain. See |
to_cplx()
: Converts from rectangular (re
, im
) or polar (mod
, arg
) components to complex form.
to_rect()
: Converts from complex (fx
) or polar components to rectangular form.
to_polr()
: Converts from complex (fx
) or rectangular components to polar form.
A modified fftab
object containing the specified representation:
to_cplx()
: Adds the fx
column for complex values.
to_rect()
: Adds the re
and im
columns for rectangular components.
to_polr()
: Adds the mod
and arg
columns for polar components.
fftab(c(1, 0, -1, 0)) |> to_cplx() fftab(c(1, 0, -1, 0)) |> to_rect() fftab(c(1, 0, -1, 0)) |> to_polr()
fftab(c(1, 0, -1, 0)) |> to_cplx() fftab(c(1, 0, -1, 0)) |> to_rect() fftab(c(1, 0, -1, 0)) |> to_polr()